

Pergamon Tetrahedron Letters 42 (2001) 3203–3206

TETRAHEDRON LETTERS

Fullerene receptor based on calix[5]arene through metal-assisted self-assembly

Takeharu Haino, Hiromi Araki, Yuko Yamanaka and Yoshimasa Fukazawa*

Department of Chemistry, *Graduate School of Science*, *Hiroshima University*, 1-3-1 *Kagamiyama*, *Higashi*-*Hiroshima* 739-8526, *Japan*

Received 19 January 2001; revised 2 March 2001; accepted 9 March 2001

Abstract—A self-assembled fullerene receptor based on calix[5]arene has been developed. Silver cation complexation held together the two calix[5]arenes with bipyridine units providing a large enough cavity to take up C_{60} or C_{70} . The formation of the supramolecular complex with \tilde{C}_{60} or C_{70} was established by using the electrospray mass spectrometry. \odot 2001 Elsevier Science Ltd. All rights reserved.

There have been many reports on synthetic receptors¹ having multiple binding sites implemented within their covalent frameworks. It takes multi-step synthesis to achieve a proper orientation of the binding groups. An alternative approach can be envisioned in which the easy construction of a large and elaborate molecular architecture can be achieved by self-assembly. In this approach, modular components are held together by self-assembly with non-covalent interactions, bringing together the key groups in the active site.

Such self-assembly is commonly seen in biological systems.2 Viruses and enzymes are well-known examples. Synthetic self-assembly is a new field in organic chemistry, and has become a current focus of molecular recognition studies.³ One of the convenient ways to construct the elaborate supramolecular architecture is a coordination-driven self-assembly methodology,⁴ which offers an alternative and extended function.

We have studied a number of calixarene-based receptors capable of binding neutral guests through noncovalent forces in organic media, $5,6$ and have reported that the covalent linking of the two calix[5]arenes brings strong binding to C_{60} or C_{70} within the cavity composed of the two calix[5]arenes.^{6b} In this paper we describe an alternative way to construct the large cavity with the two calix[5]arenes by self-assembly through metal complexation. The complexation of the two calix^[5]arene subunits 1 with Ag^+ will give a tetrahedral Ag⁺ -bis-bipyridine complex, bringing the two binding sites to close proximity. This approach has the advantage of not only bringing together the host units by metal-chelation, but it can also detect the formation of the supramolecular complex by mass spectrometry due to the presence of the metal ion.

The key subunit **1** was prepared from calix[5]arene **2**⁷ by straightforward steps according to Scheme 1.

* Corresponding author. Tel.: +81 824 24 7427; fax: +81 824 24 0724; e-mail: fukazawa@sci.hiroshima-u.ac.jp

0040-4039/01/\$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(01)00420-8

Scheme 1.

Deprotection of the *t*-butyl group under retro Friedel–Crafts conditions proceeded smoothly. Following iodination with $BTMAICl₂$, protection of the hydroxyl groups gave iodide **3** in good yield. Introduction of the metal-binding unit to **3** was carried out by palladium catalyzed coupling reaction with **4**. 8 Deprotection of the acetyl groups gave the desired compound **1**.

The formation of the metal complex with $Ag⁺$ was achieved by simply mixing 2 equivalents of **1** with 1 equivalent of AgOTf in nitromethane. The resulting complex $1 \cdot Ag^* \cdot 1$ is a pale yellow and air stable solid. The NMR signals of the complex 1·Ag+1 in $CDCl₂CDCl₂$ were rather broadened. The downfield shifted signals of the bipyridine unit in the subunit **1** clearly indicated that the silver cation bound to the bipyridine nitrogens. The spectra were concentration dependent, which comes from the dynamic equilibrium between the subunit **1** and the ternary complex **1**·Ag⁺ ·**1**. The plotting analysis of the chemical shift changes around the bipyridine protons gave the dimerization constant⁹ to be 5700 ± 300 M⁻¹ at 27°C.

The binding study for C_{60} was carried out with ¹³C NMR spectroscopy. The ¹³C resonance of C_{60}

Figure 1. ¹³C NMR spectra at 125 MHz of (a) C_{60} (3.3 mmol/L) and (b) C_{60} with 4.1 equiv. of complex $1 \text{·Ag}^+ \text{·}1$ in $CDCl₂CDCl₂$.

appeared at 143 ppm in $CDCl₂CDCl₂$ (Fig. 1a). During the addition of the complex $1 \text{·} \text{Ag}^{+} \cdot 1$, the C₆₀ signal shifted upfield by the formation of the complex $C_{60} @ 1 A g^+ 1$. Finally, the upfield shift value reached 1.8 ppm (Fig. 1b), which is consistent with that of the covalently linked double-calix[5]arene reported previously.^{6a} The large upfield shift suggests that C_{60} resides within the shielded interior of the cavity composed of the calix[5]arenes, and gives promising support on the formation of the $C_{60} @ 1 \text{·Ag}^+.1$.

The study of non-covalently bound complexes by $electrospray$ ionization mass spectrometry¹⁰ has rapidly gained momentum. A large number of reports have dealt with the mass spectrometric characterization of noncovalent complexes, such as supramolecular metal complexes, 11 knots and catenanes, 12 cavitand and guest¹³ and capsule and guest.¹⁴ ESI-MS spectrometry has proven to be an indispensable tool in supramolecular chemistry. In our system, the silver cation labeling of the assembly was an advantage for ESI-MS measurements in nonpolar aprotic solvent. CHCl₂CHCl₂ was used for the ESI measurements because both fullerenes and the complex are easily soluble in it.

The ESI-MS measurement of the complex $1 \cdot Ag + 1$ gave a peak attributable to the loss of the triflate counterion, $[M-OTf]^+$ {avg. $m/z = 1590$ for $[1 \text{·Ag}^+]$ }. The measured isotope pattern for [1·Ag⁺·1] nicely matched the calculated abundance, (Fig. 2a) and confirmed the elemental composition and the monocationic nature of the complex. The addition of 2 equivalents of C_{60} into the solution of complex $1 \text{·} \text{Ag}^+$ \cdot **1** brought a peak $[C_{60}@1 \cdot Ag^{+}\cdot 1]\$ {avg. $m/z = 2310$ }, indicating that C_{60} comes into the cavity provided by the assembly. A new peak $[C_{70}@1 \cdot Ag^+ \cdot 1]$ {avg. $m/z =$ 2430} was observed in the case of C_{70} . Both complexes contain only one guest within the cavity. In comparison with the relative intensities for the complexes $[C_{60}@1 \cdot Ag^+ \cdot 1]$ and $[C_{70}@1 \cdot Ag^+ \cdot 1]$ the difference should arise from the binding ability of complex 1 **·**Ag⁺**·1** toward C_{60} and C_{70} . Complex 1 **·**Ag⁺**·1** seems to bind C_{60} more strongly than C_{70} in the opposite sense from the covalently linked double sense from the covalently linked double calix[5]arenes,^{6b} which prefer to bind C_{70} to C_{60} . The size and shape of the cavity provided by the assembly should fit nicely to C_{60} rather than C_{70} .

Figure 2. ESI mass spectra of CHCl₂CHCl₂ solution of (a) $1 \cdot Ag^+ \cdot 1$ (5.0 mmol/L), (b) $1 \cdot Ag^+ \cdot 1$ and C_{60} (10.0 mmol/L) and (c) 1·Ag^+1 and C_{70} (10.0 mmol/L). The inset shows the calculated (straight lines) and experimental isotope pattern (curve).

Figure 3. Stereoview of the complex structure $C_{60} @ 1 \cdot Ag^{+} \cdot 1$ based on a molecular mechanics calculation.

To visualize how the cavity fits to the outer surface of C_{60} , the molecular mechanics calculation is informative. The molecular mechanics calculation was carried out with the Amber* force field in MacroModel V6.5.¹⁵ The calculated structure is shown in Fig. 3. The structure has a proper cavity for binding C_{60} , which nicely fits within the cavity.

We demonstrated that calix[5]arene subunit **1** has a ligation site assembled to produce the ternary complex $1.\text{Ag}^{+}\text{·}1$, which acts as a good receptor for C_{60} and C_{70} .

The binding property of the complex for C_{60} or C_{70} was established by ion labeling ESI mass spectrometry.

References

- 1. (a) Diedrich, F. *Cyclophanes*; The Royal Society of Chemistry: Cambridge, UK, 1991; (b) *Frontiers in Supramolecular Organic Chemistry and Photochemistry*; Schneider, H.-J.; Dürr, H., Eds.; VCH: Weinheim, 1991; (c) Lehn, J.-M. *Supramolecular Chemistry*; VCH: Weinheim, 1995; (d) Rebek, Jr., J. *Acc*. *Chem*. *Res*. **1990**, 23, 399.
- 2. Branden, C.; Tooze, J. *Introduction to Protain Structure*; Garland Publishing: New York, 1991.
- 3. (a) Conn, M. M.; Rebek, Jr., J. *Chem*. *Rev*. **1997**, 97, 1647; (b) Rebek, Jr., J. *Chem*. *Soc*. *Rev*. **1996**, 225.
- 4. (a) Leininger, S.; Olenyuk, B.; Stang, P. J. *Chem*. *Rev*. **2000**, 100, 853; (b) Caulder, D. L.; Raymond, K. N. *Acc*. *Chem*. *Res*. **1999**, 32, 975; (c) Fujita, M. *Chem*. *Soc*. *Rev*. **1998**, 27, 417.
- 5. (a) Haino, T.; Nitta, K.; Saijo, Y.; Matsumura, K.; Hirakata, M.; Fukazawa, Y. *Tetrahedron Lett*. **1999**, 40, 6301; (b) Haino, T.; Katsutani, Y.; Akii, H.; Fukazawa, Y. *Tetrahedron Lett*. **1998**, 39, 8133; (c) Haino, T.; Akii, H.; Fukazawa, Y. *Synlett* **1998**, 1016; (d) Haino, T.; Matsumura, K.; Harano, T.; Yamada, K.; Saijyo, Y.; Fukazawa, Y. *Tetrahedron* **1998**, 54, 12185.
- 6. (a) Yanase, M.; Haino, T.; Fukazawa, Y. *Tetrahedron Lett*. **1999**, 40, 2781; (b) Haino, T.; Yanase, M.; Fukazawa, Y. *Angew*. *Chem*., *Int*. *Ed*. *Engl*. **1998**, 37, 997; (c) Haino, T.; Yanase, M.; Fukazawa, Y. *Tetrahedron Lett*. **1997**, 38, 3739; (d) Haino, T.; Yanase, M.; Fukazawa, Y. *Angew*. *Chem*., *Int*. *Ed*. *Engl*. **1997**, 36, 259.
- 7. No, K.; Kwon, K. M. *Synthesis* **1996**, 1293.

. .

- 9. Connors, K. A. *Binding Constants*; John Wiley & Sons: New York, 1987.
- 10. Przybylski, M.; Glocker, M. O. *Angew*. *Chem*., *Int*. *Ed*. *Engl*. **1996**, 35, 806.
- 11. (a) Schweiger, M.; Seidel, S. R.; Schmitz, M.; Stang, P. J. *Org*. *Lett*. **2000**, ², 1255; (b) Jacopozzi, P.; Dalcanale, E. *Angew*. *Chem*., *Int*. *Ed*. *Engl*. **1997**, 36, 613; (c) Stang, P. J.; Cao, D. H.; Chen, K.; Gray, G. M.; Muddiman, D.

C.; Smith, R. D. *J*. *Am*. *Chem*. *Soc*. **1997**, 119, 5163; (d) Piguet, C.; Hopfgartner, G.; Bocquet, B.; Schaad, O.; Williams, A. F. *J*. *Am*. *Chem*. *Soc*. **1994**, 116, 9092.

- 12. Bitsch, F.; Dietrich-Buchecker, C. O.; Khémiss, A.-K.; Sauvage, J.-P.; Dorsselaer, A. V. *J*. *Am*. *Chem*. *Soc*. **1991**, 113, 4023.
- 13. Vincenti, M.; Dalcanale, E.; Soncini, P.; Guglielmetti, G. *J*. *Am*. *Chem*. *Soc*. **1990**, 112, 445.

15. Mohamadi, F.; Richards, N. G. J.; Guida, W. C.; Liskamp, R.; Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W. C. *J*. *Comp*. *Chem*. **1990**, 11, 440.